标签: 比特币认证技术
比特币认证技术(比特币认证技术规范)

在线活动入口:【欧易OKX安卓注册>>戳我戳我<<】;【欧易OKX苹果注册>>戳我戳我<<】
本篇文章给大家谈谈比特币认证技术,以及比特币认证技术规范对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
比特币机制研究
现今世界的电子支付系统已经十分发达,我们平时的各种消费基本上在支付宝和微信上都可以轻松解决。但是无论是支付宝、微信,其实本质上都依赖于一个中心化的金融系统,即使在大多数情况这个系统运行得很好,但是由于信任模型的存在,还是会存在着仲裁纠纷,有仲裁纠纷就意味着不存在 不可撤销的交易 ,这样对于 不可撤销的服务 来说,一定比例的欺诈是不可避扰基免的。在比特币出来之前,不存在一个 不引入中心化的可信任方 就能解决在通信通道上支付的方案。
比特币的强大之处就在于:它是一个基于密码学原理而不是依赖于中心化机构的电子支付系统,它能够允许任何有交易意愿的双方能直接交易而不需要一个可信任的第三方。交易在数学计算上的不可撤销将保护 提供不可撤销服务 的商家不被欺诈,而用陆氏来保护买家的 程序化合约机制 也比早李散较容易实现。
假设网络中有A, B ,C三个人。
A付给B 1比特币 ,B付给C 2比特币 ,C付给A 3比特币 。
如下图所示:
为了刺激比特币系统中的用户进行记账,记账是有奖励的。奖励来源主要有两方面:
比特币中每一笔交易都会有手续费,手续费会给记账者
记账会有打包区块的奖励,中本聪在08年设计的方案是: 每10分钟打一个包,每打一个包奖励50个比特币,每4年单次打包的奖励数减半,即4年后每打一个包奖励25个比特币,再过四年后就奖励12.5个比特币... 这样我们其实可以算出比特币的总量:
要说明打包的记录以谁为准的问题,我们需要引入一个知名的 拜占庭将军问题 (Byzantine failures)。拜占庭将军问题是由莱斯利·兰伯特提出的点对点通信中的基本问题。含义是在存在消息丢失的不可靠信道上试图通过消息传递的方式达到一致性是不可能的。
假设有9个互相远离的将军包围了拜占庭帝国,除非有5个及以上的将军一起攻打,拜占庭帝国才能被打下来。而这9个将军之间是互不信任的,他们并不知道这其中是否有叛徒,那么如何通过远距离协商来让他们赢取战斗呢?
口头协议有3个默认规则:
1.每个信息都能够被准确接收
2.接收者知道是谁发送给他的
3.谁没有发送消息大家都知道
4.接受者不知道转发信息的转发者是谁
将军们遵循口头规则的话,那就是下面的场景:将军1对其他8个将军发送了信息,然后将军2~9将消息进行转达(广播),每个将军都是消息的接受者和转发者,这样一轮下来,总共就会有9×8=72次发送。这样将军就可以根据自己手中的信息,选择多数人的投票结果行动即可,这个时候即便有间谍,因为少数服从多数的原则,只要大部分将军同意攻打拜占庭,自己就去行动。
这个方案有很多缺点:
1.首先是发送量大,9个将军之间要发送72次,随着节点数的增加,工作量呈现几何增长。
2.再者是无法找出谁是叛徒,因为是口头协议,接受者不知道转发信息的转发者是谁,每个将军手里的数据仅仅只是一个数量的对比:
这里我们假设有3个叛徒,在一种最极端的情况下即叛徒转发信息时总是篡改为“不进攻”,那么我们最坏的结果就如上图所示。将军1根据手里的信息可以推出要进攻的结论,却无法获知将军里面谁是叛徒。
这样我们就有了方案二:书面协议。
书面协议即将军在接受到信息后可以进行签字,并且大家都能够识别出这个签字是否是本人,换种说法就是如果有人篡改签字大家可以知道。书面协议相对比口头协议就是增加了一个认证机制,所有的消息都有记录。一旦发现有人所给出的信息不一致,就是追查间谍。
有了书面协议,那么将军1手里的信息就是这样的:
可以很明显得看出,在最坏的一种情况——叛徒总是转发“不进攻”的消息之下,将军7、8、9是团队里的叛徒。
这个方案解决了口头协议里历史信息不可追溯的问题,但是在发送量方面并没有做到任何改进。
在我们的示例中,比特币系统里的每个用户发起了一笔交易,都会通过自己的私钥进行签名,用数学公式表示就是:
所以之前的区块就变成了这样:
这样每一笔交易都由交易发起者通过私钥进行数字签名,由于私钥是不公开的,所以交易信息也就无法被伪造了。
如书面协议末尾所说的那样,书面协议未能解决信息交流过多的问题。当比特币系统中存在上千万节点的时候,如果要互相广播验证,请求响应的次数那将是一个非常庞大的数字,显然势必会造成网络拥堵、节点处理变慢。为了解决这个问题,中本聪干脆让整个10分钟出一个区块,这个区块由谁来打包发出呢?这里就采用了工作量证明机制(PoW)。工作量证明,说白了就是解一个数学题,谁先解出来数学题,谁就能有打包区块的权力。换在拜占庭将军的例子中就是,谁先做出数学题,谁就成为将军们里面的总司令,其他将军听从他发号的命令。
首先,矿工会将区块头所占用的128字节的字符串进行两次sha256求值,即:
这样求得一个值Hash,将其与目标值相比对,如果符合条件,则视为工作量证明成功。
工作量证明成功的条件写在了区块链头部的 难度数 字段,它要求了最后进行两次sha256运算的Hash值必须小于定下的目标值;如果不是的话,那就改变区块头的 随机数 (nonce),通过一次次地重复计算检验,直到符合条件为止。
此外, 比特币有自己的一套难度控制系统,使得比特币系统要在全网不同的算力条件下,都保持10分钟生成一个区块的速率。这也就意味着:难度值必须根据全网算力的变化进行调整。难度调整的策略是由最新2016个区块的花费时长与期望时长(期望时长为20160分钟即两周,是按每10分钟一个区块的产生速率计算出的总时长)比较得出的,根据实际时长与期望时长的比值,进行相应调整(或变难或变易)。也就是说,如果区块产生的速率比10分钟快则增加难度,比10分钟慢则降低难度。
PoW其实在比特币中是做了以下的三件事情。
这样可以防止一台高性能机器同时跑上万个节点,因为每完成一个工作都要有足够的算力。
有经济奖励就会加速整个系统的去中心化,也鼓励大家不要去作恶,要积极地按照协议本来的执行方式去执行。(所以说,无币区块链其实是不可行的,无币区块链一定导致中心化。)
也就是说,每个节点都不能以自身硬件条件去控制出快速度。现在的比特币上平均10分钟出一个块,性能再好的机器也无法打破这个规则,这就能够保证 区块链是可以收敛到共同的主链上的 ,也就是我们所说的共识。
综上,共识只是PoW三个作用中的一点,事实上PoW设计的作用有点至少有这么三种。
默克尔树的概念其实很简单,如图所示
这样,我们区块的结构就大致完整了,这里分成了区块头和区块体两部分。
区块链的每个节点,都保存着区块链从创世到现在的每一区块,即每一笔交易都被保存在节点上,现在已经有几百个GB了。
每当比特币系统中有一笔新的交易生成,就会将新交易广播到所有的节点。每个节点都把新交易收集起来,并生成对应的默克尔根,拼接完区块头后,就开始调整区块头里的随机数值,然后就开始算数学题
将算出的result和网络中的目标值进行比对,如果是结果是小于的话,就全网广播答案。其他矿工收到了这个信息后,就会立马放下手里的运算,开始下一个区块的计算。
举个例子,当前A节点在挖38936个区块,A挖矿节点一旦完成计算,立刻将这个区块发给它的所有相邻节点。这些节点在接收并验证这个新区块后,也会继续传播此区块。当这个新区块在网络中扩散时,每个节点都会将它作为第38936个区块(前一个区块为38935)加到自身节点的区块链副本中。当挖矿节点收到并验证了这个新区块后,它们会放弃之前对构建这个相同高度区块的计算,并立即开始计算区块链中下一个区块的工作。
整个流程就像下一张图所展示的这样:
简单来说,双花问题是一笔钱重复花了两次。具体来讲,双花问题可分为两种情况:
1.同一笔钱被多次使用;
2.一笔钱只被使用过一次,但是通过黑客攻击或造假等方式,将这笔钱复制了一份,再次使用。
在我们生活的数字系统中,由于数据的可复制性,使得系统可能存在同一笔数字资产因不当操作被重复使用的情况,为了解决双花问题,日常生活中是依赖于第三方的信任机构的。这类机构对数据进行中心化管理,并通过实时修改账户余额的方法来防止双重支付的出现。而作为去中心化的点对点价值传输系统,比特币通过UTXO、时间戳等技术的整合来解决双花问题。
UTXO的英文全称是 unspent transaction outputs ,意为 未使用的交易输出 。UTXO是一种有别于传统记账方式的新的记账模型。
银行里传统的记账方式是基于账户的,主要是记录某个用户的账户余额。而UTXO的交易方式,是基于交易本身的,甚至没有账户的概念。在UTXO的记账机制里,除了货币发行外,所有的资金来源都必须来自于前面某一个或几个交易。任何一笔的交易总量必须等于交易输出总量。UTXO的记账机制使得比特币网络中的每一笔转账,都能够追溯到它前面一笔交易。
比特币的挖矿节点获得新区块的挖矿奖励,比如 12.5 个比特币,这时,它的钱包地址得到的就是一个 UTXO,即这个新区块的币基交易(也称创币交易)的输出。币基交易是一个特殊的交易,它没有输入,只有输出。
当甲要把一笔比特币转给乙时,这个过程是把甲的钱包地址中之前的一个 UTXO,用私钥进行签名,发送到乙的地址。这个过程是一个新的交易,而乙得到的是一个新的 UTXO。
这就是为什么有人说在这个世界上根本没有比特币,只有 UTXO,你的地址中的比特币是指没花掉的交易输出。
以Alice向Bob进行转账的过程举例的话:
UTXO 与我们熟悉的账户概念的差别很大。我们日常接触最多的是账户,比如,我在银行开设一个账户,账户里的余额就是我的钱。
但在比特币网络中没有账户的概念,你可以有多个钱包地址,每个钱包地址中都有着多个 UTXO,你的钱是所有这些地址中的 UTXO 加起来的总和。
中本聪发明比特币的目标是创建一个点对点的电子现金,UTXO 的设计正可以看成是借鉴了现金的思路:我们可能在这个口袋里装点现金,在那个柜子角落里放点现金,在这种情况下不存在一个账户,你放在各处的现金加起来就是你所有的钱。
采用 UTXO 设计还有一个技术上的理由,这种特别的数据结构可以让双重花费更容易验证。对比一下:
小巴成长记-比特币的技术来源
我们经常说比特币具有去中心化、不可篡改、不可伪造等特点。这是为什么呢?当然下面的文字其实并没有看起来那么吓人,姑且从三个方面来讲讲,你也要耐着性子听听吧。
1、非对称加密是比特币去中心化的来源
中心化是需要一个类似银行的中心机构来验证交易的。去中心化本质上是让所有的节点都能验证交易的真伪,中本聪用了非对称加密的技术来解决中心化的问题。
非对称加密技术是什么?是指加密和解密的时候使用不同的密钥的加密算法。比如:A要向B发送信息,A和B都要产生一对用于加密的公钥和私钥顾名思义,私钥就是不能公开的,公钥就是要公开的。A发送信息给B时,A就用B的公钥对信息液洞加密,B收到后,B用B的私钥解密A的消息,而其他所有收到这个信息的人都无法解密,因为只有B才拥有这个私钥。
简单的说,公钥和私钥在非对称加密机制里是成对存在的,公钥和私钥可以去相互验证对方,我们可以把地址理解为公钥,把签名输密码的过程理解为私钥的签名。每个矿工在拿到一笔转账交易时,都可以时都可以验证公钥和私钥到底是不是匹配的,如果是匹配的,这笔交易就合法。这样,我们每个人只需要保管好自己的私钥,自己的公钥和对方的公钥就可以安全地进行转账,不需要中心的机构来验证对方发来的比特币是不是真的。
2、工作量证明机制是比特币不可篡改的技术来源
工作量证明 机制,是一种对在差不多时间内发生的事物的先后顺序达成共识的一种算法。监测工作的整个过程通常是效率非常低的,而通过对工作的结果进行认证来证明完成了一定工作的工作量,是一种非常高效的方式。比如我们日常中的各种证 驾驶证 学位证 结婚证就是这样一种有结果获悉完成工作量的证明。
工作量证明 的特点,对于执行方来说难度是适中的,对于验证方来说是非常容易被验证的。矿工们通过哈希计算,最先算出结果,获得记账权,其他节点经过非常简单的验证之后,就可以同样其记账,并同步账本。打上时间戳后,紧接着进行下一轮计算。
如果这时候有人想把某个信息进行修改,他需要做什么呢?他需要从这个区块开始把之后所有的区块都重新计算一遍,把账本再同步给其他人。而在他进行计算的同时,其他矿工们已经在原来的的链上继续往前进行计算了。因为在比特币的网络里,大家认为最长的链才是正确的链。所以,这个恶意篡改的人,需要在很短的时间内赶上现有区块的高度度,让自己的这条链成为最长的链,并让其他矿工误以为自己的这条链是正确的,这基本上是一件不可能的事,除非这个恶意篡改的人拥有超强的算力,至少超过全网的50%。那么我们来算算,现在全网的算力是8亿哈希每秒,也就是每秒进行8乘10的18次方计算,现在市场上流行的主流矿机每台的算力是10T左右,如果你想拥有全网51%的算力,你最少需要40万台最新矿机,如果按1万元每台矿机计算,仅设备就需投入40亿元人民币,加上矿机的供不应求,老矿机算力下降,全网算力的不断上涨等因素,如果不是为了60亿以上的利润回报并有强大的技术做支撑,一般人很难有这个动机和能力。
3、“UTXO”结构是比特币不可伪造的技术来源
先问个问题,如果我发给你1个比特币,你怎么知道这个比特币是真的而不是我伪誉亏造出来的,或者我已经同时转给了其他人了呢,这就要说到UTXO结构了。
UTXO(Unspend Transaction Output)是个什么鬼?意思是未花费的交易输出。来个栗子,假设我要给你100元,其中有两张张50元纸钞,一张是隔壁老王给我的,另外一张是小卖部小丽找零给我的,拿到这两张张钞票我需要拿在手上并还未花出去时才能交易给你,这就是未花费的交易输出。而通过这两张钞票往前追溯可以知道是谁交给了老王和小丽,并最终追溯到是由哪家银行发行,什么时候央行批准发行的源头,比特币里也有这样一个原理。在比特币世界里的每一笔转账,都能够追溯到上一笔交易。每一笔付款,都可以追溯到上一笔的收款。一直往上追溯到它诞生时矿工挖出来的那个区块。
这个机制就保证了在比特币网络里,比特币是不可以伪造和重复交易的。在比特币世界里,重复支付被叫做“双花”闹虚枯,就是花费了两次的意思。
比特币的核心技术包括哪些
比特币的核心技术包括1、非对称加密技术 2、点对点传输技术 3、哈希现金算法机制。
1.非对称加密技术和对称加密技术最大的不同就是有了公钥和私钥之分。非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对源银应的私有密钥才能解密;如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。公钥是公开的,私钥是保密的。 由于不涉及私钥的传输,整个传输过程就变得安全多了。后来又出现了具备商业实用性的非对称RSA加密算法以及后来的椭圆曲线加密算法(ECC),这些都奠定了加密算法理论的基础,但是美国国家安全局NSA最初认为这些技术对国家安全构成威胁,所以对这些技术进行了严密的监控,知道20世纪90年代末NSA才放弃了对这些技术的监控,这些非对称技术才最终走入了了公众的视野。这项技术对应到比特币场景中就是比特币的地址和私钥。
2.点对点传输技术顾名思义,就是无需中心服务器、个体之间可以相互传输信息的技术,P2P网络的重要目标就是让所有客户端都能提供资源,包括宽雹悄宴带、存储空间和计算能力。 对应到比特币网络中就是利用点对点的技术实现真正的去中心化。
3.哈希现金算法机制就是让那些制造垃圾邮件的人付出相应的代价!发送者需要付出一定的工作量,比如说哈希运算,几秒钟时间对于普通用户不算什么,但对于垃圾邮件的发送者每封邮件都要花几秒钟的时间,这样的成本是没有办法负担的。同时每次运算都会盖上一个独一无二的时间运禅戳,这样就能保证邮件发送方不能重复使用一个运算结果。 对于比特币而言也是同样的道理,如何保证一笔数字货币没有被多次消费(Double Spending),就类似于验证一封邮件没有被多次发送,所以就要保证每一笔交易顺利完成,必须要付出一定的工作量(proof of Work),并且在完成交易时盖上一个时间戳表示交易完成的时间。
比特币的加密(秘钥、地址、脚本验证)
生成方樱兆举式:
P2PKH的交易脚本
举个真实的例子:
ScriptSig:
PUSHDATA(72)[3045022100f8df16671995baaecab5a8d91fc3c78f22c156918cefb90dd1092fcd8578567d022041395667d7e99d131bffcb908904a2417cfb74b46df8bded2517a02beda0279701] PUSHDATA(33)
[021fc349da71680b2482e4c307adbd7aa2fc16d2cd564843ab873a8efff748d87b]
这里面的一个scriptSig由2部分组成,第一部分是签名,第二部分是公钥,PUSHDATA(N),表示要压入栈顶的byte,1个byte表示2个字符,PUSHDATA(72)表示压入144个字符
Output Scripts
HASH160 PUSHDATA(20)[d3ecd0e0d42d4b617767d9d1b966216c77ebb513] EQUAL
DUP HASH160 PUSHDATA(20)[7c45023433aea27b48251d4c5a52b1d73caba74e] EQUALVERIFY CHECKSIG
第二个找零output地址因为是P2PKH开头的,所以格式和描述的一样
结合多重签名一起使用
scriptSig: ..signatures... serialized script
scriptPubKey: OP_HASH160 scriptHash OP_EQUAL
表示一共有n个参与方,只要有m个参与方同意了这笔交易,则这笔交易就生效了,具体的规则是通过scriptHash里面的脚本内容决定的
m-of-n multi-signature transaction:
scriptSig: 0 sig1 ... script
script: OP_m pubKey1 ... OP_n OP_CHECKMULTISIG
ScriptSig:
0[] PUSHDATA(72)[30450221009b37b97eb11341a5fa69d191312df12a41449cf922dbf8e72e93eb6ca7515cb60220759126a28f69525903da3e79e873c59ee7355b6a4874eed06ed6f616712ee51201] PUSHDATA(71)[304402202da30a860b7a2ee3cf614aae2ae8fb5a75de3ea9d5274701ef0ceebc94f75801022063155b788bfb7cada4e8050992b23340d9324306fbd6a201a169ff4a676ea9d701] PUSHDATA1[52210246ccf4de0c54cc7f3354cdd993c2c50cf965fd82238b89659fbd73a1b4bf05a121024fc59f72272a897fe43803374969f396058152fe4765a8d15216f94624257b1b21022593bc69ecbf3bbcc3c58082267cb49dadaf4ca8dbf1b2297338a9d628c4297653ae]
HASH160 PUSHDATA(20)[d3ecd0e0d42d4b617767d9d1b966216c77ebb513] EQUAL
结合P2SH的新特征
目前比特币猜宴支持两种类型的交易:Pay-to-PubkeyHash、Pay-to-Script-Hash
验证脊碧一笔P2PKH交易的一个输入是否合法:
总结:先验证这笔output是不是属于该用户,再验证该用户的签名是否有效
参考:
初级版的比特币交易
什么是比特币加密技术?
比特币和区块链的诞生需要依赖于很多核心技术的突破:一是拜占庭容错技术;二是非对称加密技术;三是点对点支付技术。下面会依次介启清脊绍。
拜占庭容错技术
比特币和区块链诞生的首要难点在于如何创建分布式共识机制,也就是菜斯利·兰伯特等人1982年提出的拜占庭将军问题。所谓拜占庭将军问题是指,把战争中互不信任的各城邦军队如何达成共识并决定是否出兵的决策过程。延伸至计算机领域,试图创建具有容错性的分布式系统,即使部分节点失效仍可确保系统正常运行,也可让多个基于零信任基础的节点达成共识,并确保信息传递的一致性。
中本聪所提到的“拜占庭将军问题”解决方法起始于亚当﹒拜克在1997年发明的哈希现金算法机制,起初该设计是用于限制垃圾邮件发送与拒绝服务攻击。2004年,密码朋克运动早期和重要成员哈尔·芬尼将亚当﹒拜克的哈希现金算法改进为可复用的工作量证明机制。他们的研究又是基于达利亚·马凯与迈克尔·瑞特的学术成果:拜占庭容错机制。正是哈尔·芬尼的可复用的工作量证明机制后来成为比特币的核心要素之一。哈尔·芬尼是中本聪的最早支持者,同时也是第一笔比特币转账的接受者,在比特币发展的早期与中本聪有大量互动与交流。
非对称加密技术
比特币的非对称加密技术来源于以下几项密码学的技术创新:1976年,Sun公司前首席安全官Whitfield Diffie与斯坦福大学教授Martin Hell,在开创性论文正明《密码学的新方向》首次提出公开钥匙密码学的概念,发明了非对称加密算法。1978年省理工学院的伦纳德·阿德曼、罗纳德·李维斯特、阿迪·萨莫尔三名研究人员,共同发明了公开钥匙系统“RSA”可用于数据加密和签名,率先开发第一个具备商业实用性的非对称RSA加密算法。1985年,Neal Koblitz和Victor Miller俩人,首次提出将椭圆曲线算法(ECC),应用于密码学,并建立公钥加密的算法,公钥密码算法的原理是利用信息的不对称性,公钥对应的是私钥,私钥是解开所有信息的钥匙,公钥可以由私钥反推算出。ECC能够提供比RSA更高级别的安全。比特币使用的就是椭圆曲线算法公钥用于接收比特币,而私钥则是比特币支付时的交易签名。这些加密算法奠定了当前非对称加密理论的基础,被广泛应用于网络通信领域。但是,当时这些加密技术发明均在NSA严密监视的视野之内。NSA最初认为它们对国家安全构成威胁,并将其视为军用技术。直到20世纪90年代末,NSA才放弃对这些非对称加密技术的控制,RSA算法、ECC算法等非对称加密技术最终得以走进公众领域。
不过,中本聪并不信任NSA公布的加密技术,在比特币系统中没有使用RSA公钥系统,原因除了ECC能够提供比RSA更高级别的安全性能外,还担心美国安全部门在RSA留有悄渗技术后门。2013年9月,斯诺登就曾爆料NSA采用秘密方法控制加密国际标准,比特币采用的RSA可能留有后门,NSA能以不为人知的方法弱化这条曲线。所幸的是,中本聪神一般走位避开了RSA的陷阱,使用的加密技术不是NSA的标准,而是另一条鲜为人知的椭圆曲线,这条曲线并不在美国RSA的掌握之下。全世界只有极少数程序躲过了这一漏洞,比特币便是其中之一。
比特币认证技术的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于比特币认证技术规范、比特币认证技术的信息别忘了在本站进行查找喔。
